Dynamic flexibility in striatal-cortical circuits supports reinforcement learning.

نویسندگان

  • Raphael T Gerraty
  • Juliet Y Davidow
  • Karin Foerde
  • Adriana Galvan
  • Danielle S Bassett
  • Daphna Shohamy
چکیده

Complex learned behaviors must involve the integrated action of distributed brain circuits. While the contributions of individual regions to learning have been extensively investigated, much less is known about how distributed brain networks orchestrate their activity over the course of learning. To address this gap, we used fMRI combined with tools from dynamic network neuroscience to obtain time-resolved descriptions of network coordination during reinforcement learning in humans. We found that learning to associate visual cues with reward involves dynamic changes in network coupling between the striatum and distributed brain regions, including visual, orbitofrontal, and ventromedial prefrontal cortex (n=22, 13 females). Moreover, we found that this flexibility in striatal network coupling correlates with participants' learning rate and inverse temperature, two parameters derived from reinforcement learning models. Finally, we found that episodic learning, measured separately in the same participants at the same time, was related to dynamic connectivity in distinct brain networks. These results suggest that dynamic changes in striatal-centered networks provide a mechanism for information integration during reinforcement learning.SIGNIFICANCE STATEMENTLearning from the outcomes of actions - referred to as reinforcement learning - is an essential part of life. The roles of individual brain regions in reinforcement learning have been well characterized in terms of updating values for actions or cues. Missing from this account, however, is an understanding of how different brain areas interact during learning to integrate sensory and value information. Here we characterize flexible striatal-cortical network dynamics that relate to reinforcement learning behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI.

The frontal lobes may be organized hierarchically such that more rostral frontal regions modulate cognitive control operations in caudal regions. In our companion paper (Frank MJ, Badre D. 2011. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits I: computational analysis. 22:509-526), we provide novel neural circuit and algorithmic models of hierarchical cognitive con...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Morphological elucidation of basal ganglia circuits contributing reward prediction

Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under ...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Single dose of a dopamine agonist impairs reinforcement learning in humans: evidence from event-related potentials and computational modeling of striatal-cortical function.

Animal findings have highlighted the modulatory role of phasic dopamine (DA) signaling in incentive learning, particularly in the acquisition of reward-related behavior. In humans, these processes remain largely unknown. In a recent study, we demonstrated that a single low dose of a D2/D3 agonist (pramipexole)-assumed to activate DA autoreceptors and thus reduce phasic DA bursts-impaired reward...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره   شماره 

صفحات  -

تاریخ انتشار 2018